updated scripts

This commit is contained in:
Cameron Seamons 2025-12-15 20:41:45 -07:00
parent 40980241dd
commit f5eca2baee
2 changed files with 129 additions and 0 deletions

View file

@ -54,5 +54,7 @@ print("About to show() ...")
df.limit(5).show(truncate=False) df.limit(5).show(truncate=False)
print("Done.") print("Done.")
spark.stop() spark.stop()

127
Scripts/read_trx.py Normal file
View file

@ -0,0 +1,127 @@
import os
from pyspark.sql import SparkSession
from dotenv import load_dotenv
from pyspark.sql import functions as F
load_dotenv()
# ---- WINDOWS FIX ----
os.environ.setdefault("HADOOP_HOME", "C:\\hadoop")
os.environ.setdefault("hadoop.home.dir", "C:\\hadoop")
os.environ["PATH"] += ";C:\\hadoop\\bin"
spark = (
SparkSession.builder
.appName("bronze-to-silver-batch")
# ---- ALL JARS IN ONE PLACE ----
.config(
"spark.jars.packages",
",".join([
# Delta
"io.delta:delta-core_2.12:2.3.0",
# S3A
"org.apache.hadoop:hadoop-aws:3.3.4",
"com.amazonaws:aws-java-sdk-bundle:1.12.262"
])
)
# ---- DELTA ----
.config("spark.sql.extensions", "io.delta.sql.DeltaSparkSessionExtension")
.config("spark.sql.catalog.spark_catalog", "org.apache.spark.sql.delta.catalog.DeltaCatalog")
# ---- S3 ----
.config("spark.hadoop.fs.s3a.endpoint", os.getenv("STORAGE_ENDPOINT"))
.config("spark.hadoop.fs.s3a.access.key", os.getenv("STORAGE_ACCESS_KEY"))
.config("spark.hadoop.fs.s3a.secret.key", os.getenv("STORAGE_SECRET_KEY"))
.config("spark.hadoop.fs.s3a.path.style.access", "true")
.config("spark.hadoop.fs.s3a.impl", "org.apache.hadoop.fs.s3a.S3AFileSystem")
.getOrCreate()
)
print("Spark created OK")
# Prove S3A filesystem class is on the classpath
print("fs.s3a.impl =", spark.sparkContext._jsc.hadoopConfiguration().get("fs.s3a.impl"))
# Force a real read/action from S3
df = spark.read.json("s3a://camdoesdata/bronze/transactions_raw/")
print("About to show() ...")
df.limit(5).show(truncate=False)
print("Done.")
# ---- READ TRANSACTIONS ----
transactions_df = spark.read.json("s3a://camdoesdata/bronze/transactions_raw/")
# ---- METHOD 1: 5 random transaction records ----
random_txns = (
transactions_df
.select(
F.col("transaction.account_id").alias("account_id"),
F.col("transaction.amount").alias("amount"),
F.col("transaction.merchant_name").alias("merchant"),
F.col("transaction.category").alias("category")
)
.sample(fraction=0.1)
.limit(5)
)
print("5 Random Transactions:")
random_txns.show(truncate=False)
# ---- METHOD 2: All transactions for 5 random accounts ----
# Get 5 random account IDs
random_account_ids = (
transactions_df
.select(F.col("transaction.account_id").alias("account_id"))
.distinct()
.orderBy(F.rand()) # Random shuffle
.limit(5)
)
# Get all their transactions
all_txns_for_random_accounts = (
transactions_df
.select(
F.col("transaction.account_id").alias("account_id"),
F.col("transaction.amount").alias("amount"),
F.col("transaction.merchant_name").alias("merchant"),
F.col("transaction.transaction_type").alias("type"),
F.col("event_ts").alias("timestamp")
)
.join(random_account_ids, on="account_id", how="inner")
.orderBy("account_id", "timestamp")
)
print("\nAll Transactions for 5 Random Accounts:")
all_txns_for_random_accounts.show(50, truncate=False)
# ---- METHOD 3: Summary per account (cleaner view) ----
summary = (
transactions_df
.select(
F.col("transaction.account_id").alias("account_id"),
F.col("transaction.amount").alias("amount")
)
.join(random_account_ids, on="account_id", how="inner")
.groupBy("account_id")
.agg(
F.count("*").alias("num_transactions"),
F.collect_list("amount").alias("amounts"),
F.sum("amount").alias("total_amount"),
F.avg("amount").alias("avg_amount")
)
)
print("\nSummary of 5 Random Accounts:")
summary.show(truncate=False)
spark.stop()