updated scripts to use json data

This commit is contained in:
Cameron Seamons 2025-12-14 20:38:54 -07:00
parent a6cce866d3
commit fdcbe68f3a
4 changed files with 370 additions and 251 deletions

View file

@ -1,114 +1,132 @@
from faker import Faker
from dotenv import load_dotenv
from datetime import datetime
from datetime import datetime, timezone
import os
import random
import pandas as pd
import json
import boto3
import io
from sqlalchemy import create_engine, text
import random
import uuid
# ---- Setup ----
fake = Faker()
load_dotenv()
# ---- Postgres setup ----
user = os.getenv("PG_USER")
password = os.getenv("PG_PASSWORD")
host = os.getenv("PG_HOST")
port = "5432"
db = "postgres"
engine = create_engine(f"postgresql+psycopg2://{user}:{password}@{host}:{port}/{db}", future=True)
# ---- S3 setup (backup only) ----
s3 = boto3.resource(
s3 = boto3.client(
"s3",
endpoint_url=os.getenv("STORAGE_ENDPOINT"),
aws_access_key_id=os.getenv("STORAGE_ACCESS_KEY"),
aws_secret_access_key=os.getenv("STORAGE_SECRET_KEY")
aws_secret_access_key=os.getenv("STORAGE_SECRET_KEY"),
)
bucket_name = os.getenv("STORAGE_BUCKET")
accounts_s3_key_parquet = "DataLab/accounts/accounts.parquet"
# ---- Load customers from Postgres ----
with engine.connect() as conn:
customers_df = pd.read_sql(
sql=text("SELECT customer_id, home_branch_id, customer_since FROM customers;"),
con=conn
)
# Bronze prefixes
accounts_prefix = "bronze/accounts_raw/"
cust_prefix = "bronze/customers_raw/"
branches_prefix = "bronze/branches_raw/"
customers_df["customer_since"] = pd.to_datetime(customers_df["customer_since"]).dt.date
# ---- Helpers ----
def random_balance():
return round(random.uniform(-500, 30000), 2) # overdrafts allowed
# ---- Unique account ID generator ----
generated_ids = set()
def generate_account_id(branch_id):
while True:
branch_part = str(branch_id).zfill(3)
random_part = str(random.randint(10**8, 10**9 - 1))
acct_id = branch_part + random_part
if acct_id not in generated_ids:
generated_ids.add(acct_id)
return acct_id
def generate_account_number():
return str(random.randint(10**10, 10**11 - 1))
def assign_account_types():
def random_account_types():
roll = random.random()
if roll < 0.50:
if roll < 0.55:
return ["Checking"]
elif roll < 0.70:
elif roll < 0.80:
return ["Savings"]
else:
return ["Checking", "Savings"]
def balance_for_type(account_type):
if account_type == "Checking":
return round(random.uniform(50, 7000), 2)
return round(random.uniform(200, 25000), 2)
# ---- Load customer IDs from bronze customers ----
cust_ids = set()
# ---- Generate accounts ----
accounts = []
for _, row in customers_df.iterrows():
customer_id = row["customer_id"]
customer_since = row["customer_since"]
home_branch_id = row["home_branch_id"]
account_types = assign_account_types()
resp = s3.list_objects_v2(Bucket=bucket_name, Prefix=cust_prefix)
for obj in resp.get("Contents", []):
body = s3.get_object(Bucket=bucket_name, Key=obj["Key"])["Body"].read()
for line in body.decode("utf-8").splitlines():
record = json.loads(line)
cust_ids.add(record["customer"]["customer_id"])
for acct_type in account_types:
accounts.append({
"account_id": generate_account_id(home_branch_id),
"account_number": generate_account_number(),
"customer_id": customer_id,
"account_type": acct_type,
"open_date": fake.date_between(start_date=customer_since, end_date=datetime.today().date()),
"balance": balance_for_type(acct_type),
"branch_id": home_branch_id
})
if not cust_ids:
raise ValueError("No customer IDs found in bronze customers data")
accounts_df = pd.DataFrame(accounts)
# ---- Load existing account customer IDs ----
customers_with_accounts = set()
# ---- Save to S3 backup ----
buffer = io.BytesIO()
accounts_df.to_parquet(buffer, index=False, engine="pyarrow")
s3.Bucket(bucket_name).put_object(Key=accounts_s3_key_parquet, Body=buffer.getvalue())
print("Uploaded accounts.parquet to S3 (backup).")
resp = s3.list_objects_v2(Bucket=bucket_name, Prefix=accounts_prefix)
for obj in resp.get("Contents", []):
body = s3.get_object(Bucket=bucket_name, Key=obj["Key"])["Body"].read()
for line in body.decode("utf-8").splitlines():
record = json.loads(line)
customers_with_accounts.add(record["customer"]["customer_id"])
# ---- Ensure accounts table exists and insert into Postgres ----
with engine.begin() as conn:
conn.execute(text("""
CREATE TABLE IF NOT EXISTS accounts (
account_id VARCHAR(20) PRIMARY KEY,
account_number VARCHAR(20) UNIQUE,
customer_id BIGINT REFERENCES customers(customer_id),
account_type VARCHAR(50),
open_date DATE,
balance NUMERIC(12,2),
branch_id INT REFERENCES branches(branch_id)
);
"""))
# ---- Load branch IDs ----
branch_ids = []
# Pandas to_sql now uses the connection from SQLAlchemy 2.x
accounts_df.to_sql("accounts", conn, if_exists="append", index=False, method="multi")
print(f"Inserted {len(accounts_df)} accounts into Postgres successfully!")
resp = s3.list_objects_v2(Bucket=bucket_name, Prefix=branches_prefix)
for obj in resp.get("Contents", []):
body = s3.get_object(Bucket=bucket_name, Key=obj["Key"])["Body"].read()
for line in body.decode("utf-8").splitlines():
record = json.loads(line)
branch_ids.append(record["branch"]["branch_id"])
if not branch_ids:
raise ValueError("No branch IDs found in bronze branches data")
# ---- Determine eligible customers ----
eligible_customers = cust_ids - customers_with_accounts
# ---- Generate ONE account per eligible customer ----
events = []
for cust_id in eligible_customers:
event = {
"event_id": str(uuid.uuid4()),
"event_type": "account_opened",
"event_ts": datetime.now(timezone.utc).isoformat(),
"account": {
"account_id": str(uuid.uuid4()),
"account_number": str(random.randint(10**9, 10**11)),
"account_types": random_account_types(),
"open_date": fake.date_between(start_date="-30d", end_date="today").isoformat(),
"balance": random_balance(),
"currency": random.choice(["USD", "USD", "USD", "EUR"]),
"interest_rate": round(random.uniform(0.01, 4.5), 2),
"status": random.choice(["ACTIVE", "ACTIVE", "FROZEN", "CLOSED"]),
},
"customer": {
"customer_id": cust_id,
"segment": random.choice(["Retail", "SMB", "VIP"]),
},
"branch": {
"branch_id": random.choice(branch_ids),
"teller_id": random.randint(1000, 9999),
},
# intentional noise
"source_system": "account_generator_v1",
"batch_id": str(uuid.uuid4()),
"ingestion_ts": datetime.now(timezone.utc).isoformat(),
}
events.append(event)
# ---- Write JSONL batch ----
if events:
key = f"{accounts_prefix}batch_{datetime.now(timezone.utc).strftime('%Y%m%d_%H%M%S')}.json"
body = "\n".join(json.dumps(e) for e in events)
s3.put_object(
Bucket=bucket_name,
Key=key,
Body=body.encode("utf-8"),
)
# ---- Logging (IMPORTANT) ----
print(f"Total customers found: {len(cust_ids)}")
print(f"Customers already with accounts: {len(customers_with_accounts)}")
print(f"New accounts created this run: {len(events)}")

View file

@ -1,18 +1,16 @@
from faker import Faker
from dotenv import load_dotenv
import os
import pandas as pd
import json
import boto3
import io
from sqlalchemy import create_engine, text
from urllib.parse import quote_plus
from datetime import datetime, timezone
import uuid
# ---- Faker setup ----
# ---- Setup ----
fake = Faker()
load_dotenv()
# ---- S3 Setup ----
s3 = boto3.resource(
s3 = boto3.client(
's3',
endpoint_url=os.getenv('STORAGE_ENDPOINT'),
aws_access_key_id=os.getenv('STORAGE_ACCESS_KEY'),
@ -20,74 +18,47 @@ s3 = boto3.resource(
)
bucket_name = os.getenv('STORAGE_BUCKET')
s3_key_csv = 'DataLab/branches/branches.csv'
s3_key_parquet = 'DataLab/branches/branches.parquet'
# ---- Postgres Setup ----
user = os.getenv("PG_USER")
password = os.getenv("PG_PASSWORD")
host = os.getenv("PG_HOST")
port = "5432"
db = "postgres"
# Bronze landing zone (RAW)
branches_prefix = "bronze/branches_raw/"
engine = create_engine(f"postgresql+psycopg2://{user}:{password}@{host}:{port}/{db}")
# ---- Generate branch events ----
events = []
# ---- Ensure local data folder exists ----
os.makedirs("../Data", exist_ok=True)
now_utc = datetime.now(timezone.utc)
# ---- Generate branch data ----
branches = []
for i in range(1, 11): # 10 branches
branches.append({
"branch_id": str(i), # store as string for consistency
for _ in range(3):
event = {
"event_id": str(uuid.uuid4()),
"event_type": "branch_created",
"event_ts": now_utc.isoformat(),
"branch": {
"branch_id": str(uuid.uuid4()),
"branch_name": f"{fake.city()} Branch",
"address": fake.street_address(),
"city": fake.city(),
"state": fake.state_abbr()
})
"state": fake.state_abbr(),
"open_date": fake.date_between(start_date="-30d", end_date="today").isoformat(), # New in the last 30 days
"employee_count": fake.random_int(min=5, max=50),
"branch_manager": fake.name(),
"phone_number": fake.phone_number(),
"timezone": fake.timezone()
},
"source_system": "branch_generator",
"ingestion_ts": now_utc.isoformat()
}
df = pd.DataFrame(branches)
events.append(event)
# ---- Save locally as CSV ----
local_file = "../Data/branches.csv"
df.to_csv(local_file, index=False)
print("Generated 10 branches locally.")
# ---- Write events as JSON lines ----
key = f"{branches_prefix}batch_{now_utc.strftime('%Y%m%d_%H%M%S')}.json"
# ---- Upload CSV to S3 ----
s3.Bucket(bucket_name).upload_file(local_file, s3_key_csv)
print(f"Uploaded branches.csv to s3://{bucket_name}/{s3_key_csv}")
body = "\n".join(json.dumps(e) for e in events)
# ---- Upload / append to S3 as Parquet ----
try:
obj = s3.Bucket(bucket_name).Object(s3_key_parquet).get()
existing_df = pd.read_parquet(io.BytesIO(obj['Body'].read()))
combined_df = pd.concat([existing_df, df], ignore_index=True)
print(f"Appended {len(df)} branches to existing Parquet on S3.")
except s3.meta.client.exceptions.NoSuchKey:
combined_df = df
print("No existing branches Parquet on S3, creating new one.")
s3.put_object(
Bucket=bucket_name,
Key=key,
Body=body.encode("utf-8")
)
parquet_buffer = io.BytesIO()
combined_df.to_parquet(parquet_buffer, index=False, engine="pyarrow")
s3.Bucket(bucket_name).put_object(Key=s3_key_parquet, Body=parquet_buffer.getvalue())
print(f"Uploaded branches.parquet to s3://{bucket_name}/{s3_key_parquet}")
# ---- Create / Append to Postgres ----
with engine.connect() as conn:
for _, row in df.iterrows():
stmt = text("""
INSERT INTO branches (branch_id, branch_name, address, city, state)
VALUES (:branch_id, :branch_name, :address, :city, :state)
ON CONFLICT (branch_id) DO NOTHING
""")
conn.execute(stmt, {
"branch_id": str(row["branch_id"]),
"branch_name": row["branch_name"],
"address": row["address"],
"city": row["city"],
"state": row["state"]
})
conn.commit()
# Optional: row count check
result = conn.execute(text("SELECT COUNT(*) FROM branches;"))
print(f"Rows in branches table: {result.scalar()}")
print(f"Wrote {len(events)} raw branch events to s3://{bucket_name}/{key}")

View file

@ -1,125 +1,115 @@
from sqlalchemy import create_engine, text
from urllib.parse import quote_plus
from faker import Faker
from dotenv import load_dotenv
import os
import io
import pandas as pd
import json
import boto3
import uuid
import random
from datetime import datetime
from datetime import datetime, timezone
# ---- Load env ----
load_dotenv()
# ---- Setup ----
fake = Faker()
load_dotenv()
# ---- Postgres setup ----
user = os.getenv("PG_USER")
password = quote_plus(os.getenv("PG_PASSWORD"))
host = os.getenv("PG_HOST")
port = "5432"
db = "postgres"
engine = create_engine(f"postgresql+psycopg2://{user}:{password}@{host}:{port}/{db}")
# ---- Hetzner S3 setup ---- (backup only) ----
s3 = boto3.resource(
s3 = boto3.client(
"s3",
endpoint_url=os.getenv("STORAGE_ENDPOINT"),
aws_access_key_id=os.getenv("STORAGE_ACCESS_KEY"),
aws_secret_access_key=os.getenv("STORAGE_SECRET_KEY")
)
bucket_name = os.getenv("STORAGE_BUCKET")
branches_s3_key = "DataLab/branches/branches.csv"
customers_s3_key = "DataLab/customers/customers.parquet"
# ---- Load branches from S3 (still needed for customer assignment) ----
branches_local = "../Data/branches.csv"
s3.Bucket(bucket_name).download_file(branches_s3_key, branches_local)
branches = pd.read_csv(branches_local)
# Bronze landing zone
cust_prefix = "bronze/customers_raw/"
branches_prefix = "bronze/branches_raw/"
# ---- Load existing customers from Postgres for email uniqueness ----
with engine.connect() as conn:
table_exists = conn.execute(
text("SELECT EXISTS (SELECT 1 FROM information_schema.tables WHERE table_name='customers');")
).scalar()
# ---- Helper generators (intentionally imperfect) ----
def random_credit_score():
return random.randint(250, 900) # invalid values on purpose
if table_exists:
existing_customers = pd.read_sql(
text("SELECT email FROM customers;"),
con=conn
)
existing_emails = set(existing_customers["email"]) if not existing_customers.empty else set()
else:
existing_emails = set()
def random_income():
return random.choice([
random.randint(15000, 30000),
random.randint(30000, 80000),
random.randint(80000, 200000),
None
])
def random_employment():
return random.choice([
"Employed",
"Self-Employed",
"Unemployed",
"Student",
"Retired",
"Unknown",
None
])
# ---- Load branch IDs from bronze ----
branch_ids = []
response = s3.list_objects_v2(Bucket=bucket_name, Prefix=branches_prefix)
for obj in response.get("Contents", []):
body = s3.get_object(Bucket=bucket_name, Key=obj["Key"])["Body"].read()
for line in body.decode("utf-8").splitlines():
record = json.loads(line)
branch_ids.append(record["branch"]["branch_id"])
if not branch_ids:
raise ValueError("No branch IDs found in bronze branches data")
# ---- Helper functions ----
def realistic_credit_score():
return max(300, min(int(random.gauss(680, 60)), 850))
# ---- Generate customer events ----
events = []
def realistic_income():
brackets = [(20000,40000),(40000,70000),(70000,120000),(120000,200000)]
low, high = random.choice(brackets)
return random.randint(low, high)
for _ in range(150):
dob = fake.date_between(start_date="-90y", end_date="-16y")
def realistic_employment():
return random.choices(
["Employed","Self-Employed","Unemployed","Student","Retired"],
weights=[50,15,10,15,10]
)[0]
event = {
"event_id": str(uuid.uuid4()),
"event_type": random.choice(["customer_created", "customer_updated"]),
"event_ts": datetime.now(timezone.utc).isoformat(),
def realistic_contact():
return random.choice(["Email","Phone","SMS"])
def generate_customer_id():
return random.getrandbits(48)
# ---- Generate Customers ----
customers = []
for _ in range(50):
first = fake.first_name()
last = fake.last_name()
email = f"{first.lower()}.{last.lower()}@{fake.free_email_domain()}"
while email in existing_emails:
first = fake.first_name()
last = fake.last_name()
email = f"{first.lower()}.{last.lower()}@{fake.free_email_domain()}"
existing_emails.add(email)
dob = fake.date_between(start_date="-80y", end_date="-18y")
age = (datetime.now().date() - dob).days // 365
income = realistic_income()
credit = realistic_credit_score()
customers.append({
"customer_id": generate_customer_id(),
"full_name": f"{first} {last}",
"email": email,
"customer": {
"customer_id": random.getrandbits(48),
"first_name": fake.first_name(),
"last_name": fake.last_name(),
"email": fake.email(), # duplicates allowed
"phone": fake.phone_number(),
"date_of_birth": dob,
"age": age,
"gender": random.choice(["Male","Female","Other"]),
"street_address": fake.street_address(),
"city": fake.city(),
"state": fake.state_abbr(),
"zip_code": fake.zipcode(),
"home_branch_id": random.choice(branches["branch_id"]),
"customer_since": fake.date_between(start_date="-10y", end_date="today"),
"employment_status": realistic_employment(),
"annual_income": income,
"credit_score": credit,
"preferred_contact_method": realistic_contact()
})
"date_of_birth": dob.isoformat(),
"gender": random.choice(["Male", "Female", "Other", None]),
"married": random.choice([True, False, "Unknown"]),
"employment_status": random_employment(),
"annual_income": random_income(),
"credit_score": random_credit_score(),
"home_branch_id": random.choice(branch_ids),
"customer_since": fake.date_between(start_date="-30d", end_date="today").isoformat(), # New in the last 30 days
"preferred_contact_method": random.choice(
["Email", "Phone", "SMS", "Mail", None]
),
# extra junk fields
"browser": fake.user_agent(),
"ip_address": fake.ipv4_public(),
"marketing_opt_in": random.choice([True, False, None])
},
df = pd.DataFrame(customers)
"source_system": "customer_generator",
"ingestion_ts": datetime.now(timezone.utc).isoformat()
}
# ---- Save to S3 backup ----
buffer = io.BytesIO()
df.to_parquet(buffer, index=False, engine="pyarrow")
s3.Bucket(bucket_name).put_object(Key=customers_s3_key, Body=buffer.getvalue())
print("Uploaded customers.parquet to S3 (backup).")
events.append(event)
# ---- Insert into Postgres ----
df.to_sql("customers", engine, if_exists="append", index=False, method="multi")
print("Inserted customers into Postgres successfully!")
# ---- Write JSON lines to S3 ----
key = f"{cust_prefix}batch_{datetime.now(timezone.utc).strftime('%Y%m%d_%H%M%S')}.json"
body = "\n".join(json.dumps(e) for e in events)
s3.put_object(
Bucket=bucket_name,
Key=key,
Body=body.encode("utf-8")
)
print(f"Wrote {len(events)} raw customer events to s3://{bucket_name}/{key}")

140
Scripts/employees.py Normal file
View file

@ -0,0 +1,140 @@
from faker import Faker
from dotenv import load_dotenv
import os
import json
import boto3
from datetime import datetime, timezone
import uuid
import random
# ---- Setup ----
fake = Faker()
load_dotenv()
s3 = boto3.client(
"s3",
endpoint_url=os.getenv("STORAGE_ENDPOINT"),
aws_access_key_id=os.getenv("STORAGE_ACCESS_KEY"),
aws_secret_access_key=os.getenv("STORAGE_SECRET_KEY"),
)
bucket_name = os.getenv("STORAGE_BUCKET")
branches_prefix = "bronze/branches_raw/"
employees_prefix = "bronze/employees_raw/"
# ------------------------------------------------
# Load branch IDs
# ------------------------------------------------
branch_ids = []
resp = s3.list_objects_v2(Bucket=bucket_name, Prefix=branches_prefix)
for obj in resp.get("Contents", []):
body = s3.get_object(Bucket=bucket_name, Key=obj["Key"])["Body"].read()
for line in body.decode("utf-8").splitlines():
record = json.loads(line)
branch_ids.append(record["branch"]["branch_id"])
if not branch_ids:
raise ValueError("No branch IDs found")
# ------------------------------------------------
# Load existing employees from bronze
# ------------------------------------------------
existing_employee_ids = []
resp = s3.list_objects_v2(Bucket=bucket_name, Prefix=employees_prefix)
for obj in resp.get("Contents", []):
body = s3.get_object(Bucket=bucket_name, Key=obj["Key"])["Body"].read()
for line in body.decode("utf-8").splitlines():
record = json.loads(line)
if "employee" in record:
existing_employee_ids.append(record["employee"]["employee_id"])
existing_employee_ids = list(set(existing_employee_ids))
# ------------------------------------------------
# Event generation config
# ------------------------------------------------
NEW_EMPLOYEES = 60
TERMINATIONS = min(len(existing_employee_ids), random.randint(10, 30))
events = []
# ------------------------------------------------
# Create new employees
# ------------------------------------------------
for _ in range(NEW_EMPLOYEES):
birth_date = fake.date_between(start_date="-65y", end_date="-18y")
event = {
"event_id": str(uuid.uuid4()),
"event_type": "employee_created",
"event_ts": datetime.now(timezone.utc).isoformat(),
"employee": {
"employee_id": str(uuid.uuid4()),
"first_name": fake.first_name(),
"last_name": fake.last_name(),
"birth_date": birth_date.isoformat(),
"email": fake.email(),
"phone_number": fake.phone_number(),
"married": random.choice([True, False, None]),
"job_title": fake.job(),
"salary": random.randint(35000, 140000),
"work_satisfaction": random.randint(1, 5),
"hire_date": fake.date_between(start_date="-30d", end_date="today").isoformat(),
"employment_type": random.choice(["full_time", "part_time", "contract"]),
"remote": fake.boolean(),
"branch_id": random.choice(branch_ids)
},
"source_system": "employee_generator",
"ingestion_ts": datetime.now(timezone.utc).isoformat()
}
events.append(event)
# ------------------------------------------------
# Terminate existing employees
# ------------------------------------------------
terminated_ids = random.sample(existing_employee_ids, TERMINATIONS)
for emp_id in terminated_ids:
event = {
"event_id": str(uuid.uuid4()),
"event_type": "employee_terminated",
"event_ts": datetime.now(timezone.utc).isoformat(),
"employee": {
"employee_id": emp_id,
"termination_reason": random.choice(
["Resigned", "Laid Off", "Retired", "Fired"]
)
},
"source_system": "employee_generator",
"ingestion_ts": datetime.now(timezone.utc).isoformat()
}
events.append(event)
# ------------------------------------------------
# Write to S3 (JSONL)
# ------------------------------------------------
key = f"{employees_prefix}batch_{datetime.now(timezone.utc).strftime('%Y%m%d_%H%M%S')}.json"
body = "\n".join(json.dumps(e) for e in events)
s3.put_object(
Bucket=bucket_name,
Key=key,
Body=body.encode("utf-8")
)
# ------------------------------------------------
# Stats output
# ------------------------------------------------
print(f"Existing employees found: {len(existing_employee_ids)}")
print(f"New employees created: {NEW_EMPLOYEES}")
print(f"Employees terminated this run: {len(terminated_ids)}")
print(f"{len(events)} events written to s3://{bucket_name}/{key}")