Data_Lab/Scripts/customers.py
2025-12-10 15:59:45 -07:00

125 lines
4 KiB
Python

from sqlalchemy import create_engine, text
from urllib.parse import quote_plus
from faker import Faker
from dotenv import load_dotenv
import os
import io
import pandas as pd
import boto3
import random
from datetime import datetime
# ---- Load env ----
load_dotenv()
fake = Faker()
# ---- Postgres setup ----
user = os.getenv("PG_USER")
password = quote_plus(os.getenv("PG_PASSWORD"))
host = os.getenv("PG_HOST")
port = "5432"
db = "postgres"
engine = create_engine(f"postgresql+psycopg2://{user}:{password}@{host}:{port}/{db}")
# ---- Hetzner S3 setup ---- (backup only) ----
s3 = boto3.resource(
"s3",
endpoint_url=os.getenv("STORAGE_ENDPOINT"),
aws_access_key_id=os.getenv("STORAGE_ACCESS_KEY"),
aws_secret_access_key=os.getenv("STORAGE_SECRET_KEY")
)
bucket_name = os.getenv("STORAGE_BUCKET")
branches_s3_key = "DataLab/branches/branches.csv"
customers_s3_key = "DataLab/customers/customers.parquet"
# ---- Load branches from S3 (still needed for customer assignment) ----
branches_local = "../Data/branches.csv"
s3.Bucket(bucket_name).download_file(branches_s3_key, branches_local)
branches = pd.read_csv(branches_local)
# ---- Load existing customers from Postgres for email uniqueness ----
with engine.connect() as conn:
table_exists = conn.execute(
text("SELECT EXISTS (SELECT 1 FROM information_schema.tables WHERE table_name='customers');")
).scalar()
if table_exists:
existing_customers = pd.read_sql(
text("SELECT email FROM customers;"),
con=conn
)
existing_emails = set(existing_customers["email"]) if not existing_customers.empty else set()
else:
existing_emails = set()
# ---- Helper functions ----
def realistic_credit_score():
return max(300, min(int(random.gauss(680, 60)), 850))
def realistic_income():
brackets = [(20000,40000),(40000,70000),(70000,120000),(120000,200000)]
low, high = random.choice(brackets)
return random.randint(low, high)
def realistic_employment():
return random.choices(
["Employed","Self-Employed","Unemployed","Student","Retired"],
weights=[50,15,10,15,10]
)[0]
def realistic_contact():
return random.choice(["Email","Phone","SMS"])
def generate_customer_id():
return random.getrandbits(48)
# ---- Generate Customers ----
customers = []
for _ in range(50):
first = fake.first_name()
last = fake.last_name()
email = f"{first.lower()}.{last.lower()}@{fake.free_email_domain()}"
while email in existing_emails:
first = fake.first_name()
last = fake.last_name()
email = f"{first.lower()}.{last.lower()}@{fake.free_email_domain()}"
existing_emails.add(email)
dob = fake.date_between(start_date="-80y", end_date="-18y")
age = (datetime.now().date() - dob).days // 365
income = realistic_income()
credit = realistic_credit_score()
customers.append({
"customer_id": generate_customer_id(),
"full_name": f"{first} {last}",
"email": email,
"phone": fake.phone_number(),
"date_of_birth": dob,
"age": age,
"gender": random.choice(["Male","Female","Other"]),
"street_address": fake.street_address(),
"city": fake.city(),
"state": fake.state_abbr(),
"zip_code": fake.zipcode(),
"home_branch_id": random.choice(branches["branch_id"]),
"customer_since": fake.date_between(start_date="-10y", end_date="today"),
"employment_status": realistic_employment(),
"annual_income": income,
"credit_score": credit,
"preferred_contact_method": realistic_contact()
})
df = pd.DataFrame(customers)
# ---- Save to S3 backup ----
buffer = io.BytesIO()
df.to_parquet(buffer, index=False, engine="pyarrow")
s3.Bucket(bucket_name).put_object(Key=customers_s3_key, Body=buffer.getvalue())
print("Uploaded customers.parquet to S3 (backup).")
# ---- Insert into Postgres ----
df.to_sql("customers", engine, if_exists="append", index=False, method="multi")
print("Inserted customers into Postgres successfully!")